
REPORT DOCUMENTATION PAGE Jo,. W07048O8

thi burdan eistat or "n ot~w maced of Vt.bdits ow fotfl 0. #nxi~g1gcm I cijqmwato rstcr~g via b~~ to W."U0m"fIAD- A265 0 18~ i~lgV.tm ~ 6t1~ Itl(EfS WiNQ.ar saW*48 5 Jeferwn Dayi Hieiay. S,~ 1204, Adetinl VA 202 -4302. and to ', OR m or inlomalcO " FapA1: Aftan OPMo of

1II 11111 1i I~ll1111111111111111111! E-PORT DATE 3. REPORT TYPE AND DATES COVERED

I Final: 1 Apr93

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: Meridian Software Systems, Inc., Meridian Ada, Version
4.1.3, Motorola VME 167-68040 under OS/9 68K, v2.4 (host & target),
930401W1 1313

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-563.0393

Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081 Vj',
11. SUPPLEMENTARY NOTES . , :". p
12a DISTRIBUTION/AVAILABILITY STATEMENT A% 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Meridian Software Systems, Inc., Meridian Ada, Version 4.1.3, Motorola VME 167-68040 (under OS/9 68K, v2.4) (host &
target), ACVC 1.11

93-11630

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE COOE

17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298. (Rev 2-89)

Prescribed by ANSI Std. 239-128

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

AVF Control Number: AVF-VSR-563.0393
Date VSR Completed: 6 April 1993

93-02-08-MSS

Ada COMIPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 930401W1.11313
Meridian Software Systems, Inc.

Meridian Ada, Version 4.1.3
Motorola VME 167-68040 under OS/9 68K, v2.4

(FINAL)

Prepared By:
Ada Validation Facility

Hq 645 C-CSG/SCSL
Wright-Patterson AFB OH 45433-5707

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 1 April 1993.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: Motorola VME 167-68040
under OS/9 68K, v2.4

Target Computer System: Same as Host

Customer Agreement Number: 93-02-08-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
930401W1.11313 is awarded to Meridian Software Systems, Inc.. This
certificate expires two years after MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada Validation Facility
Dale E. Lange
Technical Director
Hq 645 C-CSG/SCSL
Wright-Patterson AFB OH 45433-5707

Aa V ý1ati Oranization
S Dir cto6&' uter and software Engineering Division

Institute for Defense Analyses
Alexandria VA 22311 Acoosiin For

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

Dist j

! |_

DECLARATION OF CONFORMANCE

Custotmer: Mleridiani Software Svstemis. hic.

Ada Validationt Facility: ASD/S('EL. Wright-Pattersoni AFB OH 45433-65503

ACVC Version: 1.11

Ada linplenieliation:

('aiipiler Name anid Versioni: Mleridiani Ada. Versiont 4.1.3

Host ('oniputer Systemi: Mlotorola VNME 1(i74S-600
0S/9 GS %-2.4

Target ('oinpitter Systern: Samne as, Host

Customer's Declaration

1. the 1nndersigiied. represeninhg INleridiani Softw~are S 'yst-eiis. lite.. declare that Alejidiali
Software S vsteiins. lite. has nto knrowledge of deliberate (Jeviationis fromn the Ada ,a itgiiage
Stand~ard ANSL/NIIL-STD-1,I415A hi the iinipleinientat ioni listed hin this declarationi. I declar-e that
Mlemidianl Software Systemls, In1C. is time ownier of the ab~ove iinplkneltteationt anml he certificates
shall be awarded hin the tiaine of the ownier's corporate namie.

_________________________ Date:_________

Stowe Boyd. Pr siderit
Mleid iani Software Syst ems. inc.
10 Pastetir Street
Irvinie. ('A 92718

TABLE OF CCt4TES

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-2
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER i

INTRODUCTION

The Ada impleventation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide rUG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

I-i

INTRODLCTICX

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90I Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Zlass C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test cZjectiva, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDIB02B BDIB06A ADIB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CDZA87A CD2Bl5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD720EA BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C357'p,L..Y (14 tests) C35707L..Y (14 tests)
C"-OJ8L..Y (14 tests) C35802L..Z (15 tests)
ý45241L. .Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L. .Z (15 tests) C45621L..Z (15 tests)
C45641L. .Y (14 tests) C46012L..Z (15 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type
LONGFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT-FLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45423A, C45523A, and C45622A check that the proper exception is
raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point operations lie outside the range of the base type; for
this implementation, MACHINEOVERFLO4S is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence or generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; this implementation does not support
pragma INLINE.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINECODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminaints without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 10
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL-IO
CE2102F CREATE INOUT FILE DIRECT 10
CE2102I CREATE IN FILE DIRECT-I0
CE2102J CREATE OLU FILE DIRECT--IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN-FILE SEQUENTIAL-IO
CE2102P OPEN OUT FILE SEQUENTIAL-I0
CE2102Q RESET OUT-FILE SEQUENTIAL IO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT_-FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET IN-FILE DIRECT-10
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT-FILE DIRECT-10
CE3102E CREATE IN FILE TEXT 15
CE3102F RESET Any Mode TEXT--I
CE3102G DELETE TEXT 10
CE31021 CREATE OUT FILE TEXT-IO
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-io.

The following 16 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the same
external file and one or more are open for writing; USE-ERROR is
raised when this association is attempted.

CE2107B..E CE2107G..H CE2107L CE2110B CE2110D
CE2111D CE2111H CE3111B CE3111D.. E CE3114B

2-3

IMPLEMENTATION DEPENDENCIES

CE3115A

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded;- this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SETLINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an Tnappropriate value fo7 the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this 'implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 9 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests

B22003A B83033B B85013D

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST
as the range constr..int of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. LRM 3.5.7:12).

EA1003B was graded passed by Processing Modification as directed by the
AVO. This test checks whether legal units of a compilation are accepted if
one of the compilation units is illegal. This test was processed with
compiler option "-fI", which forces the compiler to generate code for legal
units of a compilation.

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit's body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

SC3204C and BC3205D were graded passed by Processirq Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the

2-4

IMPLEMENTATION DEPENDENCI ES

instantiating units on the generic units as allowed by AZ-00408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete-no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

William E. Crosby
Meridian Software Systems, Inc.
10 Pasteur Street
Irvine CA 92718
(714) 727-0700

For sales information about this Ada implementation, contact:

Jim Smith
Meridian Software Systems, Inc.
10 Pasteur Street
Irvine CA 92718
(714) 727-0700

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3-1

PROCESSING INFORMATION

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC (Pro90.

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

a) Total Number of Applicable Tests 3786
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 88
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 289 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect
-fE Generate error file for the Ada listing utility.
-fI Ignore compilation errors and continue generating

code for legal units within the same compilation
file (for test EA1003B).

-fQ Suppress "added to library" and "Generating code

3-2

PROCESSING INFORMATION

for" information messages.
-fw Suppress informative warning messages.
-c Produce continuous form Ada listings (no page

headers).
-p Obey PRAGMA PAGE directives within program even though

the -c flag says not to generate page breaks.
-s Output Ada listing to the standard output file instead

of to a disk file.

Test output, compiler and linker listings, and job logs were captured on
magnetic media and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string-aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAX-IN LEN 200 - Value of V

$BIG IDi (1..V-l -> 'A', V -> '1')

$BIG ID2 (l..V-l -> 'A', V -> '2')

$BIG ID3 (1..V/2-> 'A') & '3' &
(1..V-l-V/2 -> 'A')

$BIGID4 (1..V/2 W> 'A') & '4' &
(1..V-l-V/2 -> 'A')

$BIG INT LIT (l..V-3 -> '0') & "298"

$BIGREALLIT (1..V-5 -> '0') & "690.0"

$BIGSTRINGI '"' & (l..V/2 -> 'A') & '"'

$BIG STRING2 "' & (l..V--V/2 -> 'A') & '1' & "

$BLANKS (1..V-20 -> '

$MAXLENINTBASEDLITERAL
"2:" & (l..V-5-> '0') & "ii:"

SMAX LEN REAL BASED LITERAL
"16:" & (1..V-7 -> '0') & "F.E:"

A-1

MACRO PARAMETERS

$MAXSTRINGLITERAL "' & (l..V-2 -> 'A') & "'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

SALIGNMENT 4

$COUNTLAST 2147483646

$DEFAULT MEM SIZE 1024

$DEFAULT STOR UNIT 8

$DEFAULT SYS NAME M68000

$DELTA DOC 2.0**(-31)

$ENTRY ADDRESS 16#0#

$ENTRY ADDRESS1 16#1#

SENTRY ADDRESS2 16#2#

SFIELD LAST 2147483647

$FILETERMINATOR ' o

SFIXED NAME NOSUCHFIXEDTYPE

$FLOAT NAME NO SUCHFLOAT TYPE

$FORM STRING

$FORMSTRING2 "CANNOT_RESTRICTFILECAPACITY"

$GREATERTHANDURATIC4N
90000.0

$GREATERTHANDURATION BASE LAST

10000"600.0

$GREATERTHANFLOAT BASE LAST
- 1.6E+308

$GREATER THAN FLOAT SAFE LARGE
- - - .~�E+308

A-2

MACRO PARAMETERS

$GREATER THANSHORTFLOAT SAFE LARGE
1. 07+308-

$HIGH PRIORITY 20

$ILLEGALEXTERNAL FILE NAMEI
/NODIRECTORY/FILENAME1

$ILLEGAL_EXTERNAL FILE NAME2
- ODI RECTORY/FI ENAME2

$ INAPPROPRIATE LINELENGTH
-1

$ INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGMA1 PRAGMA INCLUDE ("A28006D1 .ADA")

$INCLUDEPRAGMA.2 PRAGMA INCLUDE ("B28006F1 .ADA")

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGER LAST PLUS_1 2147483648

$ INTERFACELANGUAGE C

$LESSTHANDURATION -90000.0

$LESSTHAN DURATION BASE FIRST
-10000000.0

$LINETERMINATOR ASCII.CR

$LOW PRIORITY 1

$MACHINECODESTATEMENT
NULL;

$MACHINE_CODETYPE INSTRUCTION

$MANTISSA DOC 31

$MAXDIGITS 15

SMAX INT 2147483647

$MAX INT_PLUS_1 2147483648

SMININT -2147483648

$NAME BYTEINTEGER

A-3

MACRO PARAMET'ERS

$NAMELIST M68000

$NAmESrECIFICATION1 ,'hO/acvc/acvc/val,'X2120A

$NAM4ESPECI FICATION2 /hO/acvc/acvc/val/X2120B

SNAMESPECIFICATION3 /hO/acvc/acvc/val/IX3119A

$NEGBASEDINT 16#FFFF~FFFE#

$NEW MEMSIZE 1024

$NEW STOR UNIT 8

$NEW SYSNAME M68000

$PAGETERMINATOR ASCII.CR & ASCII.FF

$RECORDDEFINITION NEW INTEGER;

$RECORDNAME INSTRUCTION

$TASKSIZE 32

$TASKSTORAGESIZE 1024

$TICK 1.0

$VARIABLEADDRESS FCNDECL.VARADDRESS

$VARIABLEADDRESS1 FCNDECL.VARADDRESS1

$V.ARIABLE ADDRESS2 FCNDECL . .R .ADDRESS2

$YOURPRAGMA NO SUCH PRAGMA6

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

MERIDIAN ADA COMPILER OPTIONS

-fD Generate debugging output. The -fD option causes the
compiler to generate the appropriate code and data for
operation with the Meridian Ada Debugger.

-fe Annotate assembly language listing. The -fe option
causes the compiler to annotate an assembly language
output file. The output is supplemented by comments
containing the Ada source statements corresponding to the
assembly language code sections written by the code
generator. To use this option, the -S option must also
be specified, otherwise the annotated file is not emitted.

-fE Generate error log file. The -fE option causes the
compiler to generate a log file containirg all the error
messages and warning messages produced during compilation.
The error log file has the same name as the source file,
with the extension .err. For example, the error log file
for simple.ada is simple.err. The error log file is
placed in the current working directory. In the absence
of the -fE option, the error log information is sent to
the standard output stream.

-fI Ignore compilation errors and continue generating code
for legal units within the same compilation file.

-fL Generate exception location information. The -fL option
causes location information (source file names and line
numbers) to be maintained for internal checks. This
information is useful for debugging in the event that an

B-1

COMPILATION SYSTEM OPTIONS

"Exception never handled" message appears when an
exception propagates out of the main program. This flag
causes the code to be somewhat larger. If -fL is not
used, exceptions that propagate out of the main program
will behave in the same way, but no location information
will be printed with the "Exception never handled"
message.

-fN Suppress numeric checking. The -fN flag suppresses two
kinds of numeric checks for the entire compilation:
division check and overflow check. These checks are
describea in section 11.7 o? the LRM. This flag reduces
the size of the code.

-fQ Suppress "added to library" and "Generating code for"
information messages normally output by the compiler.

-fs Suppress all checks. The -fs flag suppresses all
automatic checking, including numeric checking. This
flag is equivalent to using pragma suppress on all checks.
This flag reduces the size of the code, and is good for
producing "production quality" code or for benchmarking
the compiler. Note that there is a relatod ada option,
-fN to suppress only certain kinds of numeric checks.

-fU Inhibit library update. The -fU option inhibits library
updates. This is of use in conjunction with the -S
option. Certain restrictions apply to use of this option.

-fv Compile verbosely. The compiler prints the name of each
subprogram, package, or generic as it is compiled.
Information about the symbol table space remaining
following compilation of the named entity is also printed
in the form "[nK]".

-fw Suppress warning messages. With this option, the
compiler does not print warning messages about ignored
pragmas, exceptions that are certain to be raised at
run-time, or other potential problems that the compiler
is otherwise forbidden to deem as errors by the LRM.

-g The -g option instructs the compiler to run an additional
optimization pass. The optimizer removes common
sub-expressions, dead code and unnecessary jumps. It
also does loop optimizations.

-K Keep internal form file. This option is used in
conjunction with the Optimizer. Without this option, the
compiler deletes internal form files following code
generation.

-lmodifiers
Generate listing file. The -1 option causes the compiler
to create a listing. Optional modifiers can be given to

B-2

COMPILATION SYSTEM OPTIONS

affect the listing format. You can use none or any
combination of the following modifiers:

c Use continuous listing format. The listing by
default contains a header on each page. Specifying
-lc suppresses both pagination and header output,
producing a continuous listing.

p obey pragma page directives. Specifying -lp is only
meaningful if -lc has also been given. Normally -1c
suppresses all pagination, whereas -lcp suppresses
all pagination except where explicitly called for
within the source file with a pragma page directive.

s Use standard output. The listing by default is
written to a file with the same name as the source
file and the extension .1st, as in simple.lst from
simple.ada. Specifying -ls causes the listing file
to be written to -,he standard output stream instead.

t Generate relevant text output only. The listing by
default contains the entire source program as well
as interspersed error messages and warning messages.
Specifying -lt causes the compiler to list only the
source lines to which error messages or warning
messages apply, followed by the messages themselves.

The default listing file generated has the same name as
the source file, with the extension .1st. For example,
the default listing file produced for simple.ada has the
name simple.lst. The listing file is placed in the
current working directory. Note: -1 also causes an
error log file to be produced, as with the -fE option.

-L library-name

Default: ada.lib

Use alternate library. The -L option specifies an
alternative name for the program library.

-N No compile. This option causes the ada command to do a
"dry run" of the compilation process. The command
invoked for each processing step is printed. This is
similar to the -P option, but no actual processing is
performed.

-P Print compile. This option causes the ada command to
print out the command invoked for each processing step
as it is performed.

-S Produce assembly code. Causes the code generator to
produce an assembly language source file and to halt
further processing.

B-3

COtIPIIATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker locumentation and not
to this report.

MERIDIAN ADA LINKER OPTIONS

-A Aggressively inline. This option instructs the optimizer
to aggressively inline subprograms when used in addition
to the -G option. Typically, this means that subprograms
that are only called once are inlined. If only the -G
option is used, only subprograms for which pragma inline
has been specified are inlined.

-c compiler-program-name

Default: (as stored in program library)

Use alternate compiler. The -c option specifies the
complete (non relative) directory path to the meridian
Ada compiler. This option overrides the compiler
program name stored in the program library. The -c
option is intended for use in cross-compiler
configurations, although under such circumstances, an
appropriate library configuration is normally used
instead.

-f Suppress main program generation step. The -f option
suppresses the creation and additional code generation
steps for the temporary main program file. The -f option
can be used when a simple change has been made to the
body of a compilation unit. If unit elaboration order
is changed, or if the specification of a unit is changed,
or if new units are added, then this option should not be
used.

-g Perform global optimization only. The -g option causes
bamp to invoke the global optimizer on your program.
Compilation units to be optimized globally must have been
compiled with the ada -K option.

-G Perform global and local optimization. The -G option
causes banp to perform both global and local optimization
on your program. This includes performing pragma inline.
As with the -g option, compilation units to be optimized
must have been compiled with the ada -K option.

-I Link the program with a version of the tasking run-time

B-4

COMPILATION SYSTEM OPTIONS

which supports pre-emptive task scheduling. This option
produces code which handles interrupts more quickly, but
has a slight negative impact on performance in general.

-L library-name

Default: ada.lib

Use alternate library. The -L option specifies the name
of the program library to be consulted by the bamp
program. This option overrides the default library name.

-n No link. The -n option suppresses actual object file
linkage, but creates and performs code generation on the
main program file.

-N No operations. The -N option causes the bamp command to
do a "dry run"; it prints out the actions it takes to
generate the executable program, but does not actually
perform those actions. The same kind of information is
printed by the -P option.

-o output-file-name

Default: file

Use alternate executable file output name. The -o option
specifies the name of the executable program file written
by the bamp command. This option overrides the default
output file name.

-P Print operations. The -P option causes the bamp command
to print out the actions it takes to generate the
executable program as the actions are performed.

-v Link verbosely. The -v option causes the bamp command to
print out information about what actions it takes in
building the main program.

-w Suppress warnings. This option allows you to suppress
warnings from the optimizer.

B-5

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are prcvided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type I is range -2147483648 .. 2147483647;
type LONGINTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type BYTE INTEGER is range -128 .. 127;

type FLOAT is
digits 15 range -1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

end STANDARD,

C-1

This appendix lists implementation-dependent characteristics of Meridian
Ada. Note that there are no preceding appendices. This appendix is
called Appendix Fin order to comply with the Reference Manual for the
Ada Programming Language* (LRM) ANSI/MIL-STD-1815A which states
that this appendix be named Appendix F.

Implemented Chapter 13 features include length clauses, enumeration
representation clauses, record representation clauses, address clauses,
interrupts, package system, machine code insertions, pragma interface,
and unchecked programming.

F. I Pragmas
The implemented pre-defined pragmas are:

elaborate See the LRM section 10.5

interface See section F.1.1

list See the LRM Appendix B

pack See section F.1.2

page See the LRM Appendix B

priority See the LRM Appendix B

suppress See section F.1.3

inline See the LRM section 6.3.2. This pragma is not actually effective
unless you compile/link your program using the global
optimizer.

The remaining pre-defined pragmas are accept3d, but presently ignored:

controlled optimize system-name
shared storage unit memory-size

Named parameter notation for pragmas is not supported.

When illegal parameter forms are encountered at compile time, the
compiler issues a warning message rather than an error, as required by
the Ada language definition. Refer to the LRM Appendix B for additional
information about the pre-defined pragmas.

F.1.1 Pragma Interface
The form of pragma interface in Meridian Ada is:

pragma interface (language, subprogram 1, 'link-name")

OS/9 Compiler User's Guide Revsed 2/24/93 Page 179

Appendix F Implementation-Dependent Choracteristics

where:

language This is the interface language, one of the names assembly,
builtin, c, or internal. The names builtin and internal are
reserved for use by Meridian compiler maintainers in
run-time support packages.

subprogram This is the name of a subprogram to which the pragma
interface applies.

link-name This is an optional string literal specifying the name of the
non-Ada subprogram corresponding to the Ada
subprogram named in the second parameter. If link-name
is omitted, then link-name defaults to the value of
subprogram translated to lowercase. Depending on the
language specified, some automatic modifications may be
made to the link-name to produce the actual object code
symbol name that is generated whenever references are
made to the corresponding Ada subprogram. The object
code symbol generated for link-name is always translated
to upper case.

It is appropriate to use the optional link-name parameter to
pragma interface only when the interface subprogram
has a name that does not correspond at all to its Ada
identifier or when the interface subprogram name cannot
be given using rules for constructing Ada identifiers (e.g., if
the name contains a '$' character).

The characteristics of object code symbols generated for each interface
language are:

assembly The object code symbol is the same as link-name.

builtin The object code symbol is the same as link-name, but prefixed
with two underscore characters (if). This language
interface is reserved for special interfaces defined by
Meridian Software Systems, Inc. The builtin interface is
presently used to declare certain low-level run-time
operations whose names must not conflict with
programmer-defined or language system defined names.

C The object code symbol is othe same as link-name, but with one
underscore character (" ") prepended. This is the
convention used by the C compiler.

internal No object code symbol is generated for an internal language
interface; this language interface is reserved for special
interfaces defined by Meridian Software Systems, Inc. The
internal interface is presently used to declare certain
machine-level bit operations.

No automatic data conversions are performed on parameters of any
interface subprograms. It is up to the programmer to ensure that calling
conventions match and that any necessary data conversions take place
when calling interface subprograms.

Poge 180 Revsed 2/24/93 OS/9 Compiler User's Guide

Attributes

A pragma interface may appear within the same declarative part as
the subprogram to which the pragma interface applies, following the
subprogram declaration, and prior to the first use of the subprogram. A
pragma interface that applies to a subprogram declared in a package
specification must occur within the same package specification as the
subprogram declaration; the pragma interface may not appear in the
package body in this case. A pragma interface declaration for either a
private or nonprivate subprogram declaration may appear in the private
part of a package specification.

Pragma interface for library units is not supported.

Refer to the LRM section 13.9 for additional information about pragma
interface.

F.1.2 Pragma Pack
Pragma pack is implemented for composite types (records and arrays).

Pragma pack is permitted following the composite type declaration to
which it applies, provided that the pragma occurs within the same
declarative part as the composite type declaration, before any objects or
components of the composite type are declared.

Note that the declarative part restriction means that the type declaration
and accompanying pragma pack cannot be split across a package
specification and body.

The effect of pragma pack is to minimize storage consumption by
discrete component types whose ranges permit packing. Use of pragma
pack does not defeat allocations of alignment storage gaps for some
record types. Pragma pack does not affect the representations of real
types, pre-defined integer types, and access types.

F.1.3 Pragma Suppress
Pragma suppress is implemented as described in the LRM section 11.7,
with these differences:

"* Presently, divisioncheck and overflowcheck must be
suppressed via a compiler flag, - f N; pragma suppress is ignored
for these two numeric checks.

"* The optional "ON =>" parameter name notation for pragma
suppress is ignored.

"* The optional second parameter to pragma suppress is ignored; the
pragma always applies to the entire scope in which it appears.

F.2 Attributes
All attributes described in the LRM Appendix A are supported.

OS/9 Compiler User's Guide Revised 2/24193 Page 181

Appendix F Implementat on-Cependent Characteristics

F.3 Standard Types
Additional standard types are defined in Meridian Ada:

"* byte-integer

"* shortinteger

"* longinteger

The standard numeric types are defined as:

type byte-integer is range -126 .. 127;

type shortinteger is range -32768 .. 32767;

type integer is range -2147483648 .. 2147483647;

type long-integer is range -2147483648 .. 2147483647;

type float is digits 15
range -1.79769313486231Z+308 1.79769313486231E+308;

type duration is delta 0.0001 range -86400.0000
e6400.0000;

F.4 Package System
The specification of package system is:

package system is
type address is new long_integer;

type name is (m68000);
system_name : constant name := m68000;

storage_unit : constant :-8;
memory_size i constant :u 1024;

- System-Dependent Named Numbers

mnmint : constant %a -2147483648;
max-int : constant : 21474836471
max_digits : constant :- 15;
max_mantissa : constant :- 311
fine_delta : constant -- 2.0 ** (-31)1
tick : constant :- 1.0;

- Other System-Dependent Declarations

subtype priority is integer range 1 .. 20;

The value of system.memorysize is presently meaningless.

Page 182 Revied 2/24/93 OS/9 Compiler User's Guide

Restrictions on Representation Clauses

F.5 Restrictions on Representation Clauses
F.5. 1 Length Clauses

A size specification (t 's ize) is rejected if fewer bits are specified than
can accommodate the type. The minimum size of a composite type may
be subject to application of pragma pack. It is permitted to specify
precise sizes for unsigned integer ranges, e.g., 8 for the range 0. .255.
However, because of requirements imposed by the Ada language
definition, a full 32-bit range of unsigned values, i.e. 0.. (2**32) -1,
cannot be defined, even using a size specification.

The specification of collection size (t 'I atorages ize) is evaluated at
run-time when the scope of the type to which the length clause applies is
entered, and is therefore subject to rejection (via storage-error)
based on available storage at the time the allocation is made. A collection
may include storage used for run-time administration of the collection,
and therefore should not be expected to accommodate a specific number
of objects. Furthermore, certain classes of objects such as unconstrained
discriminant array components of records may be allocated outside a
given collection, so a collection may accommodate more objects than
might be expected.

The specification of storage for a task activation (t "storage size) is
evaluated at run-time when a task to which the length clause applies is
activated, and is therefore subject to rejection (via storageerror)
based on available storage at the time the allocation is made. Storage
reserved for a task activation is separate from storage needed for any
collections defined within a task body.

The specification of small for a fixed point type (t Ismall) is subject only
to restrictions defined in the LRM section 13.2.

F.5.2 Enumeration Representation Clauses
The internal code for the literal of an enumeration type named in an
enumeration representation clause must be in the range of
standard. integer.

The value of an internal code may be obtained by applying an
appropriate instantiation of unchecked_convera ion to an integer type.

F.5.3 Record Representation Clauses
The storage unit offset (the at static..simple,_expression part) is given in
terms of 8-bit storage units and must be even.

A bit position (the range part) applied to a discrete type component may
be in the range 0.. 15, with 0 being the least significant bit of a
component. A range specification may not specify a size smaller than can
accommodate the component. A range specification for a component not
accommodating bit packing may have a higher upper bound as
appropriate (e.g., 0.. 31 for a discriminant string component). Refer to

OS/9 Compiler User's Guide Revbed 2/24/93 Page 183

Apendlx F Implementatlon-Dependent Characteristics

the internal data representation of a given component in determining the
component size and assigning offsets.

Components of discrete types for which bit positions are specified may
not straddle 16-bit word boundaries.

The value of an alignment clause (the optional at mod part) must
evaluate to 1, 2, 4, or 8, and may not be smaller than the highest
alignment required by any component of the record. On the UNIX
operating system, this means that some records may not have alignment
clauses smaller than 2.

F.5.4 Address Clauses

An address clause may be supplied for an object (whether constant or
variable) or a task entry, but not for a subprogram, package, or task unit.
The meaning of an address clause supplied for a task entry is given in
section F.5.5.

An address expression for an object is a 32-bit segmented memory
address of type system. address.

F.5.5 Interrupts
A task entry's address clause can be used to associate the entry with a
UNIX signal. Values in the range 0. .31 are meaningful, and represent
the interrupts corresponding to those values.

An interrupt entry may not have any parameters.

F.5.6 Change of Representation
There are no restrictions for changes of representation effected by means
of type conversion.

F.6 Implementation-Dependent Components
No names are generated by the implementation to denote
implementation-dependent components.

F.7 Unchecked Conversions
There are no restrictions on the use of uncheckedconversion.
Conversions between objects whose sizes do not conform may result in
storage areas with undefined values.

Page 184 Revsed 2124/93 OS/9 Compiler User's Guide

Source Line and Identfier Len ts

F.8 Input-Output Packages
A summary of the implementation-dependent input-output characteristic-,
is:

"* In calls to open and create, the form parameter must be the empty
string (the default value).

"* More than one internal file can be associated with a single external
file for reading only. For writing, only one internal file may be
associated with an external file; Do not use reset to get around this
rule.

"* Temporary sequential and direct files are given names. Temporary
files are deleted when they are closed.

"* File I/0 is buffered; text files associated with terminal devices are
line-buffered.

"* The packages sequentialio and direct:io cannot be
instantiated with unconstrained composite types or record types with
discriminants without defaults.

F.9 Source Line and Identifier Lengths
Source lines and identifiers in Ada source programs are presently limited
to 200 characters in length.

OS/9 Compiler User's Guide Revd 2/124/193 Page 185

